

Irrigation Systems Overview

Guy Fipps Professor and Extension Agricultural Engineer Biological and Agricultural Engineering

Asequate Water Supply?

Surface water

- Regulated by the State
- A water right or a contract is required
- Groundwater
 - Generally, belongs to the landowner
 - Managed through local groundwater conservation districts

Water Supply

- Groundwater
 - Groundwater pumpage is regulated only in special districts:
 - » Edwards Aquifer Authority
 - » Harris and Galveston Subsidence Districts

Figure 2. The 20 minor aquifers of Texas account for 3.7 percent of all groundwater withdrawals.

Minor Aquifers of Texas

Do I need a permit for a new water well?

Depends –

- Do you live in an area with a Groundwater Conservation District?
- Most (not all) GCDs require a permit
- GCDs are also a good source on expected well yield and extent of local groundwater formation
- The State of Texas does not require permits

Groundwater Conservation Districts

FIGURE 1.3. GROUNDWATER CONSERVATION DISTRICTS IN TEXAS.

The Average and the Average Averag (\$1) (\$1) The Artesty of Constant (Sec) (\$2) (Integrated the Sec)

\$10. Transform I company internet

And in the local division of the local divis

sector interaction introducers family Wat last later a later

Recommended Steps

- 1) Define goals
- 2) Do you have enough water?
- 3) What is the water quality?
- 4) Collect field information (size, shape, soils, slopes, etc.)
- 5) Pre-screen irrigation technologies
- 6) Obtain rough cost estimates for selected irrigation alternatives
- 7) Select irrigation system
- 8) Obtain site specific design and detailed costs/bids from more than one dealer

Terms

Wells

- Depth of well
- Depth where pump is set
- Depth to the water level
 - » Depth to the static water level
 - » Water depth when pump is running (LIFT)
- HEAD = lift + (operating pressure requirements of irrigation system)

Step 1: Define Goals

- Full irrigation
- Supplemental irrigation

irrigating during short, dry periods

Deficit irrigation

purposely supplying less water than crop needs

Chemigation

Step 1: Define Goals

Chemigation

supplying fertilizers and crop protection chemicals through irrigation system

requires an irrigation system with good to excellent efficiency

requires specialized equipment including an injector, mixing tank, and devices to prevent accidental spills

Step 2: Determine Available Water Supply

Irrigation Systems are designed to supply peak water demand of crops

(inches per day, inches per week etc.)

Bulletin 6019

Crop water demand information useful for sizing irrigation systems (shown are typical values Central/East Texas)

(copy of bulletin are posted at <u>http://texaset.tamu.edu</u>)

Crop	Peak Demand		
	(inches/day)		
cotton	0.23		
corn	0.32		
citrus	0.16		
sorghum	0.22		
perennial pasture	0.25		
small grains	0.26		
vegetables	0.16		

Example: Pasture/forage in South Texas

Peak water demand 0.25 inches/day = 6789 gal/acre/day (note: 1 ac-in = 27,154 gal)

Total Gallons Needed per day

10 acres	50 acres	100 acres
67,885	339,425	678,850

Example: Pasture/forage in South Texas

Peak water demand 0.25 inches/day = 6789 gal/acre/day

Pumping rate – 24 hours @ 100% efficiency

10 acres	50 acres	100 acres
47 gpm	235 gpm	470 gpm

Example: Pasture/forage in South Texas

Peak water demand 0.25 inches/day = 6789 gal/acre/day

Pumping rate – 12 hours @ 80% efficiency

10 acres	50 acres	100 acres
117 gpm	587 gpm	1175 gpm

Example: Pasture/forage in East Texas

Is your pond large enough to provide 0.25 inches/day?

Calculate pond size:

surface area x average depth = water volume(acres)(feet)(ac-ft)

Example: Pasture/forage in Central Texas

Is your pond large enough to provide 0.25 inches/day?

Water Supply in Weeks (at 100% efficiency)	10 acre field	50 acre field	100 acre field
1	2 ac-ft	7 ac-ft	15 ac-ft
2	3 ac-ft	15 ac-ft	30 ac-ft
3	5 ac-ft	22 ac-ft	45 ac-ft

Example: Pasture/forage in Central Texas

Is your pond large enough to provide 0.25 inches/day?

Water Supply in Weeks (at 80% efficiency)	10 acre field	50 acre field	100 acre field
1	2 ac-ft	9 ac-ft	19 ac-ft
2	4 ac-ft	18 ac-ft	37 ac-ft
3	6 ac-ft	27 ac-ft	56 ac-ft

Level of control Purchase cost

Efficiency

Labor requirements and costs (time and effort)

Management skill

Operational costs (pressurization of water)

Level of Control

Being able to put on just the amount of water needed

The amount of water applied at each irrigation is based on the concept of *"Filling up the Root Zone"*

Level of Control

Amount of water applied at each irrigation is based on the principle of *FILLING THE ROOT ZONE*

Calculated based on:

- soil water holding capacity of the soil
- depth of the root zone
- minimum moisture level that should be maintained in the root zone

("MAD" – managed allowable depletion)

FIGURE 17. The larger the soil particle size, the lower the waterholding capacity. (a) A relatively small amount of water is held by coarse-textured soil as compared to (b) the amount held by fine-textured soil.

Typical Values

Soil Water Holding Capacity

Clay soil	2.2 inches/foot
Loam	1.8 inches/foot
Sand	1 inch/foot

Typical Values

Managed Allowed Depletion

% of water that can be deleted from the soil between irrigation without stressing plants

Most field crops	50%
Fresh vegetables	25%

Water Needed for Each Irrigation

<u>3 foot root zone</u>

Soil Type	Field Crops	Vegetables
sand	1.4 inches	0.6 inches
loam	2.7 inches	1.1 inches
clay	3.3 inches	1.7 inches

Step 3: Water Quality

Salinity (*EC*, *TDS*, *total salinity*)

Sodium (SAR, soluble sodium %)

Boron (mainly a problem in South Texas)
 High <u>salinity</u> may damage plant foliage with spray irrigation or accumulate in soil

(leaching for control)

High sodium (SAR) may affect soil structure

(chemical treatment and leaching for control)

Boron is toxic at a few ppm

Water Quality

KNOW YOUR WATER QUALITY!! While the groundwater quality is generally good in East Texas, some aquifers do have elevated levels of salt

For more information, see

Irrigation Water Quality Standards and Salinity Management Strategies, B-1667

Operational costs

Today we will focus on the costs to pressurize water

Typical Pumping Costs:

Acre-inch per 100 ft head (or 43 psi)

type	Natural	Electric	Electric	Diesel
	gas	turbine	centrifugal	
Cost	\$1.49	\$2.00	\$2.52	\$3.07
Fuel cost*	\$11 MCF	\$0.11	kwh	\$2.65 gal

* my fuel costs on Oct 22, 2008

Operational costs -

Costs of Pressurizing Water

Per acre-foot of water, electric centrifugal pump at 0.11 kwh

pressure	15	30	45	60	90
	psi	psi	psi	psi	psi
cost	\$10.44	\$20.76	\$31.20	\$41.64	\$57.72
(per ac-ft)					

Level of control Purchase cost

Efficiency

Labor requirements and costs (time and effort)

Management skill

Operational costs (pressurization of water)

Level of control ability to apply just the amount of water that is needed

Efficiency (varies by type of system) application efficiency -(losses in the air with sprinkler irrigation) distribution efficiency (evenness of coverage in furrow and drip irrigation)

Purchase cost

Note: the size of the system and/or field influences costs

Labor requirements and costs (time and effort)

- will use the following scale
 - "low"
 1-3

 "medium"
 4-6
 - "high" 7 10

Irrigation System Evaluation

Drip Irrigation

- Many Types of products
- Drip tape
- Drip tubing with in-line or insertion emitters
- Micro spray and sprinklers

Forage and Row-crop Applications - drip tape under \$500/acre for larger fields \$500 - \$1000 ac for small acreage

Row-crop only due to expense - drip tubing / emitters Typically \$1000 to \$1200 per acre)

REASONS FOR SUCESS

Frequent irrigations with small amounts of water

- this maintains an optimal soil moisture environment

(no wet stress or dry stress)

control	pur	rchase
	COS	ts
efficiency	lab	or
skill	ope	erating

control	excellent	purchase costs	
efficiency	Excellent to fair	labor	
skill	high	operating	

control	excellent	purchase costs*	high to very high
efficiency	excellent to fair	labor	low (2 – 3)
skill	high	operating	moderate to low

Very high for large acreage

May be cost-competitive with other types of irrigation systems for fields less than 40 acres

Top Ten Drip Irrigation Problems

- 1. Starting too big.
- 2. Laterals too long.
- 3. System not matched to available flow rate.
- 4. Insufficient pressure.
- 5. Inadequate filtration.

Top Ten Drip Irrigation Problems

- 6. Improperly sized mainlines and manifolds.
- 7. No flow meter.
- No (or insufficient number of) pressure gages.
- 9. No flushing manifold.
- **10.** No method for irrigation scheduling.

Top Ten Drip Irrigation Problems

- 11. Improper or inadequate chemical injection program for clogging control.
- 12. Unrealistic expectations.
- 13. No market window or adequate cash crop to pay for system.
- 14. Insufficient water supply for crop.

Drip Irrigation Keys to Success

- Good Filtration
- Routine Chemical Injection to Control Clogging
- Soil Moisture Management
- High Value Crop

Irrigation System Evaluation

Surface Irrigation (furrow, flood)

Surface Irrigation

Poor to good efficiency

Cutting of field ditches
Siphon tubes
Gated pipe (plastic/aluminum)
Gated pipe with cutback irrigation
Gated pipe with surge flow irrigation

Flooding

Micro-basin or basin irrigation
Can be efficient if basin is level, heavier soils and is flooded quickly

Furrow Irrigation

Not normally used for hay crops, but is used for other types of forages and grain crops
Need sufficient water to flood rows quickly
Need efficient system to deliver water to each row

A DESCRIPTION OF THE OWNER

Siphon Tubes

State of State

Gated Pipe

Stand Pipe

Surface Irrigation

control	Poor to good	purchase costs	low
efficiency	Poor to good	labor	Moderate (6) (10 with siphon tubes)
skill	moderate	operating	low

Large water stream per row
 (25 + gallons per minute for each row)

- depends on soil type --check with NRCS

- Gated pipe: plastic or aluminum
- Surge flow?

Irrigation System Evaluation

Sprinkler Irrigation

Small acreage

solid set (aluminum pipe with sprinklers on risers)

 Small acreage, occasional irrigation, or with lots of labor hand-move (portable solid set)

wheel-move (side-roll)

Sprinkler Irrigation

Large Acreage

<u>Center Pivot</u> or <u>Linear-move</u> is the way to go!

Linear-move machines are designed for rectangular fields
Both use the same type of water applicators

("sprinklers") and have similar design considerations

Side-roll (wheel-move)

Side-roll Irrigation (wheel-move)

control	purchase	
	costs	
efficiency	labor	
skill	operating	

Side-roll Irrigation (wheel-move)

control	good	purchase	
		costs	
efficiency	poor to moderate	labor	
skill	low	operating	

Side-roll Irrigation (wheel-move)

control	good	purchase costs	low
efficiency	poor to moderate	labor	medium (6)
skill	low	operating	high

Big gun

"Good application for a big gun

Merry Christmas Tree Farm – a choose and cut operation. Occasional irrigation, no pipes or sprinklers in field when public comes.

Big gun – travelers (*reel-move***)**

Big Gun (traveler)

control	purchase	
	costs	
efficiency	labor	
skill	operating	
Big Gun (traveler)

control	moderate to good	purchase costs	
efficiency	poor	labor	
skill	low	operating	

Big Gun (traveler)

control	moderate to good	purchase costs	moderate to high
efficiency	poor	labor	medium (4)
skill	low	operating	very high

Sprinkler Irrigation

Types of Pivot/Linear-move Water Applicators

- (1) high pressure impacts
- (2) medium elevation spray applicators (MESA)
- (3) low energy precision applicators(LEPA)
- (4) low elevation spray applicators(LESA)

Water-move pivot

Older pivot with high pressure impact sprinklers

MESA (medium elevation spray applicators)

MESA (medium elevation spray applicators)

Over-pressured MESA system

LEPA (low energy precision applicators)

bubble mode

LEPA with alternate row furrow dikes

Every row furrow dikes (West Texas)

Center Pivot Irrigation

Costs:

- as low as ~ \$325 per acre for larger fields
- ~ \$500 to \$1000 per acre for smaller fields
- linear-move machines cost ~ 50% more than same length pivot

Center Pivot Irrigation

Most Common Problems:

- mainline too small
- elevation changes in field not considered in the design
- end gun added
- system designed for incorrect flow rate

Center Pivot Irrigation Keyes to Success

Choose Water Applicator with: - low pressure requirements - to be positioned below main line **Consider LEPA or LISA:** - best in high winds - may require method for controlling runoff

Center Pivot Design

Be sure that the system is properly designed!

- elevation changes in field considered
- mainline pipe sized correctly
- efficient water applicators
- matched to available water supply
- matched to water requirements of crop

Center Pivot (properly designed)

control	purchase	
	costs	
efficiency	labor	
skill	operating	

Center Pivot (properly designed)

control	good to excellent	purchase costs	low to moderate
efficiency*	good to excellent	labor	low
skill	moderate	operating	low to moderate

* MESA, LESA, LEPA

Center Pivot (LESA or LEPA)

control	excellent	purchase costs	low to moderate (field size)
efficiency	excellent	labor	low (1)
skill	moderate	operating	low

Step 1: Examine Site Conditions – soil type, soil depth, slopes

Step 2: Determine Water Supply – volume, pumping rate, availability, quality

Step 3: Choose Appropriate Irrigation Technology – consider labor, energy cost, and management requirements

Step 4: Properly Size Pipelines, Pumps, etc.

- **Step 5: Don't Forget Accessories**
 - pressure gauges, flow meters, filters, etc.
- Step 6: Choose Method for Irrigation Scheduling– when to irrigate, how much water to apply
- Step 7: Implement Appropriate Management Practices – furrow diking, conservation tillage, etc.

Copies of this presentation: Copy of this PowerPoint presentation and irrigation publications on the web site: http://gfipps.tamu.edu Crop water requirements and Bulletin 6019 on the web site: http://texaset.tamu.edu

Thank You