Irrigation Technology

- Surface
- Center Pivot

Ten Steps – Irrigation Design

Surface Irrigation

Poor to good efficiency

- Cutting of field ditches
- Siphon tubes
- Gated pipe (plastic/aluminum)
- Gated pipe with cutback irrigation
- Gated pipe with surge flow irrigation

Field Ditch

L L MARSIN

Siphon Tubes

POLYPIPE SURFACE

SURGE SURFACE FLOW

How does surge work?

Single butterfly type valve

P&R Surge Systems, Inc. Website

http://prsurge.com/

Available surge valves from Waterman and P&R

Valve Pipe Size	Capacity gpm	Weight Ibs
4"*	300	19
6"	625 - 700	31 - 37
8″	1100 - 1200	44 - 46
10"	1700 - 2000	50 - 54
12"	2500 - 3000	67 - 90

Surge Flow Irrigation

Where it works - increases the efficiency of furrow irrigation by 10 to 30%

Works by sending surges of water to alternating sides of a field

Can help automate surface irrigation of large blocks

Surface Irrigation Keys to Success

<u>USE</u>:

- Large water stream per row
 (25 + gallons per minute for each row)
 - depends on soil type –check with NRCS
- Gated pipe: plastic or aluminum
- Surge flow?

Typical On-farm Overall Irrigation System Efficiencies

System Surface		Overall Efficiency
a.	Average	0.5
b.	Land leveling and delivery pipeline meeting design standards	0.7
c.	Tailwater Management System	0.8
d.	Surge	0.6-0.9
Sprinkler		0.55-0.75
Center Pivot		0.55-0.9
LEPA		~0.95
Drip		0.8-0.9

Sprinkler Irrigation

Types of Pivot/Linear-move Water Applicators

- (1) high pressure impacts
- (2) medium elevation spray applicators (MESA)
- (3) low energy precision applicators(LEPA)
- (4) low elevation spray applicators(LESA)

Older pivot with high pressure impact sprinklers

MESA CENTER PIVOT

MESA (medium elevation spray applicators)

LESA CENTER PIVOT

LEPA (low energy precision applicators)

bubble mode

44

LEPA with alternate row furrow dikes

LEPA CENTER PIVOT

Efficiency

- LESA 90%+
- LEPA 95-98%

Ten Steps in Irrigation System Design

Recommended Steps

- 1) Define goals
 - Full irrigation, Supplemental irrigation, Planned deficit irrigation
 - Specific crops and rotation
 - Other uses such as wastewater irrigation
- 2) Do you have enough water?
 - Existing pump flow and pressure
 - Volume of water available
 - Peak consumptive use analysis
- 3) What is the water quality?
 - Salinity, sodium/SAR, boron, iron
 - Other limiting constituents
 - Does the well pump sand/silts?
- 4) Collect field information
 - size, shape, soils, slopes, etc.

Recommended Steps

- 5) Pre-screen irrigation technologies
- 6) Obtain rough cost estimates for selected irrigation alternatives and discuss with grower
- 7) Select irrigation system
- 8) Select required accessories
 - Pressure gages, flow meter, pressure regulators
 - Center pivot pressure gage drop
 - Drip filters

Recommended Steps

- 9. Obtain site specific design, including
 - proper mainline pipe sizing
 - telescoping of pivot mainline (if needed)
- 10. Select pump and power units based on head/flow requirements and other factors