

Use of Irrigation in East Texas -Pastures and Forages

> Pineywoods Cattle Congress April 13, 2012

Guy Fipps, P.E. Professor and Extension Agricultural Engineer

Charles Swanson

Extension Program Specialist Biological and Agricultural Engineering Texas AgriLife Extension Service

Figure 2. The 20 minor aquifers of Texas account for 3.7 percent of all groundwater withdrawals.

Minor Aquifers of Texas

Do I need a permit for a new water well?

Depends –

- Do you live in an area with a Groundwater Conservation District?
- Most (not all) GCDs require a permit
- GCDs are also a good source on expected well yield and extent of local groundwater formation
- The State of Texas does not require permits

Groundwater Conservation Districts

FIGURE 1.3. GROUNDWATER CONSERVATION DISTRICTS IN TEXAS.

Surface Water

- Texas owns all surface water except for diffused water
- Diffused water is basically precipitation that occurs on your land which can be collected (i.e., in ponds)
- Texas holds surface water in trust and appropriates it out to users through *permits* or *water rights*

Surface Water

- Most of Texas' surface water is already appropriated (i.e., no new water rights are available)
- Water rights may be bought and sold
 Water rights holders can sell their water to others

Recommended Steps

- 1) Define goals
- 2) Do you have enough water?
- 3) What is the water quality?
- 4) Collect field information (size, shape, soils, slopes, etc.)
- 5) Pre-screen irrigation technologies
- 6) Obtain rough cost estimates for selected irrigation alternatives
- 7) Select irrigation system
- 8) Obtain site specific design and detailed costs/bids from more than one dealer

Step 1: Define Goals

- Full irrigation
- Supplemental irrigation

irrigating during short, dry periods

Deficit irrigation

purposely supplying less water than crop needs

Step 2: Determine Available Water Supply

Irrigation Systems are designed to supply peak water demand of crops

(inches per day, inches per week etc.)

Bulletin 6019

Crop water demand information useful for sizing irrigation systems (shown are typical values Central/East Texas) (copy of bulletin are posted at <u>http://texaset.tamu.edu</u>)

Crop	Peak Demand
	(inches/day)
cotton	0.23
corn	0.32
citrus	0.16
sorghum	0.22
perennial pasture	0.25
small grains	0.26
vegetables	0.16

Example: Pasture/forage in Central/East Texas

Peak water demand 0.25 inches/day = 6789 gal/acre/day (note: 1 ac-in = 27,154 gal)

Total Gallons Needed per day

10 acres	50 acres	100 acres
67,885	339,425	678,850

Example: Pasture/forage in Central/East Texas

Peak water demand

0.25 inches/day = 6789 gal/acre/day

Pumping rate – 24 hours @ 100% efficiency

10 acres	50 acres	100 acres
47 gpm	235 gpm	470 gpm

Example: Pasture/forage in Central/East Texas

Peak water demand 0.25 inches/day = 6789 gal/acre/day

Pumping rate – 12 hours @ 80% efficiency

10 acres	50 acres	100 acres
117 gpm	587 gpm	1175 gpm

Example: Pasture/forage in East Texas

Is your pond large enough to provide 0.25 inches/day?

Calculate pond size:

surface area x average depth = water volume(acres)(feet)(ac-ft)

Example: Pasture/forage in Central Texas

Is your pond large enough to provide 0.25 inches/day?

Water Supply in Weeks (at 100% efficiency)	10 acres of forage	50 acres of forage	100 acres of forage
1	2 ac-ft	7 ac-ft	15 ac-ft
2	3 ac-ft	15 ac-ft	30 ac-ft
3	5 ac-ft	22 ac-ft	45 ac-ft

Example: Pasture/forage in Central Texas

Is your pond large enough to provide 0.25 inches/day?

Water Supply in Weeks (at 80% efficiency)	10 acres of forage	50 acres of forage	100 acres of forage
1	2 ac-ft	9 ac-ft	19 ac-ft
2	4 ac-ft	18 ac-ft	37 ac-ft
3	6 ac-ft	27 ac-ft	56 ac-ft

Operational costs

Today we will focus on the costs to pressurize water

Typical Pumping Costs:

Acre-inch per 100 ft head (or 43 psi)

	Natural	Electric	Electric	Diesel
	gas	turbine	centrifugal	
cost per ac- in of water	\$1.49	\$2.00	\$2.52	\$4.23
fuel price basis	\$4.50 MCF	\$0.1 1	kwh	\$3.65 gal

Operational costs -

Costs of Pressurizing Water

Per acre-foot of water, electric centrifugal pump at 0.11 kwh

pressure	15	30	45	60	90
	psi	psi	psi	psi	psi
cost	\$10.44	\$20.76	\$31.20	\$41.64	\$57.72
(per ac-ft)					

Step 3: Water Quality

- Salinity (EC, TDS, total salinity)
- Sodium (SAR, soluble sodium %)
- Boron (mainly a problem in South Texas)

Water Quality

KNOW YOUR WATER QUALITY!!

While the groundwater quality is generally good in East Texas, some aquifers do have elevated levels of salt

For more information, see

Irrigation Water Quality Standards and Salinity Management Strategies, B-1667

Irrigation System Evaluation

<u>Factors</u>

Level of control

Purchase cost

Efficiency

Labor requirements and costs (time and effort)

Management skill

Operational costs (pressurization of water)

Irrigation System Evaluation

Many Types of products

- Drip tape
- Drip tubing with in-line or insertion emitters
- Micro spray and sprinklers (orchards)

control	purchase costs	
efficiency	labor	
skill	operating	

control	excellent	purchase costs	
efficiency	Excellent to fair	labor	
skill	high	operating	

control	excellent	purchase costs*	high to very high
efficiency	excellent to fair	labor	low (2 – 3)
skill	high	operating	moderate to low

Very high for large acreage

May be cost-competitive with other types of irrigation systems for fields less than 40 acres

Top Ten Drip Irrigation Problems

- 1. Starting too big.
- 2. Laterals too long.
- 3. System not matched to available flow rate.
- 4. Insufficient pressure.
- 5. Inadequate filtration.

Top Ten Drip Irrigation Problems

- 6. Improperly sized mainlines and manifolds.
- 7. No flow meter.
- 8. No (or insufficient number of) pressure gages.
- 9. No flushing manifold.
- **10.** No method for irrigation scheduling.

Top Ten Drip Irrigation Problems

- 11. Improper or inadequate chemical injection program for clogging control.
- 12. Unrealistic expectations.
- No market window or adequate cash crop to pay for system.
- 14. Insufficient water supply for crop.

Drip Irrigation Keys to Success

Good Filtration

• Routine Chemical Injection to Control Clogging

Soil Moisture Management

• High Value Crop
Irrigation System Evaluation

Surface Irrigation (furrow, flood)

Flooding

Micro-basin or basin irrigation
Can be efficient if basin is level, heavier soils and is flooded quickly

Furrow Irrigation

Not normally used for hay crops, but is used for other types of forages and grain crops
Need sufficient water to flood rows quickly
Need efficient system to deliver water to each row

Surface Irrigation

Poor to good efficiency

Cutting of field ditches
Siphon tubes
Gated pipe (plastic/aluminum)
Gated pipe with cutback irrigation
Gated pipe with surge flow irrigation

Polypipe Or layflat

Surface Irrigation

control	Poor to good	purchase	low
		costs	
efficiency	Poor to good	labor	Moderate (6) (10 with siphon tubes)
skill	moderate	operating	low

- not recommended on sandy soils
- flood fields quickly
- use large water stream per row with furrow irrigation
 (25 + gallons per minute for each row)
 - depends on soil type -check with NRCS
- Gated pipe: plastic or aluminum
- consider surge flow with furrow irrigation

Irrigation System Evaluation

Sprinkler Irrigation

Small acreage

solid set (aluminum pipe with sprinklers on risers)

 Small acreage, occasional irrigation, or with lots of labor hand-move (portable solid set)

wheel-move (side-roll)

Sprinkler Irrigation

Large Acreage

<u>Center Pivot</u> or <u>Linear-move</u> is the way to go!

Linear-move machines are designed for rectangular fields

Both use the same type of water applicators ("sprinklers") and have similar design considerations

Side-roll (wheel-move)

Side-roll Irrigation (wheel-move)

control	purchase	
	costs	
efficiency	labor	
skill	operating	

Side-roll Irrigation (wheel-move)

control	good	purchase costs	
efficiency	poor to moderate	labor	
skill	low	operating	

Side-roll Irrigation (wheel-move)

control	good	purchase	low
		costs	
efficiency	poor to moderate	labor	medium (6)
skill	low	operating	high

Big gun

"Good application for a big gun"

Merry Christmas Tree Farm – a choose and cut operation. Occasional irrigation, no pipes or sprinklers in field when public comes.

Big gun – travelers (*reel-move***)**

Big Gun (traveler)

control	purchase costs	
efficiency	labor	
skill	operating	

Big Gun (traveler)

control	moderate to good	purchase costs	
efficiency	poor	labor	
skill	low	operating	

Big Gun (traveler)

control	moderate to good	purchase costs	moderate to high
efficiency	poor	labor	medium (4)
skill	low	operating	very high

Water-move pivot

Sprinkler Irrigation

Types of Pivot/Linear-move Water Applicators

- (1) high pressure impacts
- (2) medium elevation spray applicators (MESA)
- (3) low energy precision applicators(LEPA)
- (4) low elevation spray applicators(LESA)

Older pivot with high pressure impact sprinklers

MESA (medium elevation spray applicators)

MESA (medium elevation spray applicators)

Over-pressured MESA system

LEPA (low energy precision applicators)

bubble mode

LEPA with alternate row furrow dikes

Every row furrow dikes (West Texas)

Center Pivot Irrigation

- as low as ~ \$325 per acre for larger fields
- ~ \$500 to \$1000 per acre for smaller fields
- linear-move machines cost ~ 50% more than same length pivot

Center Pivot Irrigation

Most Common Problems:

- mainline too small
- elevation changes in field not considered in the design
- end gun added
- system designed for incorrect flow rate

Center Pivot Irrigation Keyes to Success

Choose Water Applicator with: - low pressure requirements - to be positioned below main line **Consider LEPA or LISA:** - best in high winds - may require method for controlling runoff

Center Pivot Design

Be sure that the system is properly designed!

- elevation changes in field considered
- mainline pipe sized correctly
- efficient water applicators
- matched to available water supply
- matched to water requirements of crop

Center Pivot (properly designed)

control	purchase costs	
efficiency	labor	
skill	operating	

Center Pivot (properly designed)

control	good to excellent	purchase costs	low to moderate
efficiency*	good to excellent	labor	low
skill	moderate	operating	low to moderate

* MESA, LESA, LEPA
Center Pivot (LESA or LEPA)

control	excellent	purchase costs	low to moderate (field size)
efficiency	excellent	labor	low (1)
skill	moderate	operating	low

O- <u>KEYS to Successful Irrigation</u>

Step 1: Examine Site Conditions – soil type, soil depth, slopes

Step 2: Determine Water Supply – volume, pumping rate, availability, quality

Step 3: Choose Appropriate Irrigation Technology – consider labor, energy cost, and management requirements

Step 4: Properly Size Pipelines, Pumps, etc.

O- <u>**KEYS to Successful Irrigation</u></u></u>**

- Step 5: Don't Forget Accessories
 - pressure gauges, flow meters, filters, etc.
- Step 6: Choose Method for Irrigation Scheduling– when to irrigate, how much water to apply
- Step 7: Implement Appropriate Management Practices – furrow diking, conservation tillage, etc.

Copies of this presentation: Copy of this PowerPoint presentation and irrigation publications on the web site: http://gfipps.tamu.edu **Crop** water requirements and Bulletin 6019 on the web site: http://texaset.tamu.edu

Thank You